347 research outputs found

    Fire Safety Analysis of a Railway Compartment using Computational Fluid Dynamics

    Get PDF
    Trains are considered to be the safest on-land transportation means for both passengers and cargo. Train accidents have been mainly disastrous, especially in case of fire, where the consequences are extensive loss of life and goods. The fire would generate smoke and heat which would spread quickly inside the railway compartments. Both heat and smoke are the primary reasons of casualties in a train. This study has been carried out to perform numerical analysis of fire characteristics in a railway compartment using commercial Computational Fluid Dynamics code ANSYS. Non-premixed combustion model has been used to simulate a fire scenario within a railway compartment, while Shear Stress Transport k-ω turbulence model has been used to accurately predict the hot air turbulence parameters within the compartment. The walls of the compartment have been modelled as no-slip stationary adiabatic walls, as is observed in real life conditions. Carbon dioxide concentration (CO2), temperature distribution and air flow velocity within the railway compartment has been monitored. It has been observed that the smoke above the fire source flows to both sides of the compartment. The highest temperature zone is located downstream the fire source, and gradually decreases with the increase in the distance from the fire source. It can be seen that CFD can be used as an effective tool in order to analyse the evolution of fire in railway compartments with reasonable accuracy. The paper also briefly discusses the topical reliability issues

    Inelastic Neutron scattering in CeSi_{2-x}Ga_x ferromagnetic Kondo lattice compounds

    Full text link
    Inelastic neutron scattering investigation on ferromagnetic Kondo lattice compounds belonging to CeSi_{2-x}Ga_{x}, x = 0.7, 1.0 and 1.3, system is reported. The thermal evolution of the quasielastic response shows that the Kondo interactions dominate over the RKKY interactions with increase in Ga concentration from 0.7 to 1.3. This is related to the increase in k-f hybridization with increasing Ga concentration. The high energy response indicates the ground state to be split by crystal field in all three compounds. Using the experimental results we have calculated the crystal field parameters in all three compounds studied here.Comment: 12 Pages Revtex, 2 eps figures

    Evaluation of Effectiveness of Wavelet Based Denoising Schemes Using ANN and SVM for Bearing Condition Classification

    Get PDF
    The wavelet based denoising has proven its ability to denoise the bearing vibration signals by improving the signal-to-noise ratio (SNR) and reducing the root-mean-square error (RMSE). In this paper seven wavelet based denoising schemes have been evaluated based on the performance of the Artificial Neural Network (ANN) and the Support Vector Machine (SVM), for the bearing condition classification. The work consists of two parts, the first part in which a synthetic signal simulating the defective bearing vibration signal with Gaussian noise was subjected to these denoising schemes. The best scheme based on the SNR and the RMSE was identified. In the second part, the vibration signals collected from a customized Rolling Element Bearing (REB) test rig for four bearing conditions were subjected to these denoising schemes. Several time and frequency domain features were extracted from the denoised signals, out of which a few sensitive features were selected using the Fisher’s Criterion (FC). Extracted features were used to train and test the ANN and the SVM. The best denoising scheme identified, based on the classification performances of the ANN and the SVM, was found to be the same as the one obtained using the synthetic signal

    Multiple exciton generation in VO2

    Full text link
    Multiple exciton generation (MEG) is a widely studied phenomenon in semiconductor nanocrystals and quantum dots, aimed at improving the energy conversion efficiency of solar cells. MEG is the process wherein incident photon energy is significantly larger than the band gap, and the resulting photoexcited carriers relax by generating additional electron-hole pairs, rather than decaying by heat dissipation. Here, we present an experimental demonstration of MEG in a prototype strongly correlated material, VO2, through photocurrent spectroscopy and ultrafast transient reflectivity measurements, both of which are considered the most prominent ways for detecting MEG in working devices. The key result of this paper is the observation of MEG at room temperature (in a correlated insulating phase of VO2), and the estimated threshold for MEG is 3Eg. We demonstrate an escalated photocurrent due to MEG in VO2, and quantum efficiency is found to exceed 100%. Our studies suggest that this phenomenon is a manifestation of expeditious impact ionization due to stronger electron correlations and could be exploited in a large number of strongly correlated materials.Comment: 6 pages, 5 figures, Physical Review

    Registration of 'ICTP 8203' pearl millet

    Get PDF
    The Pennisetum glaucum [P. americanum] variety ICTP8203, released in 1988, was produced by random mating 5 S2 progeny of an Iniari (early maturing) landrace from northern Togo. When evaluated as Togo-P8203 at Patancheru (3 tests), Hissar and Bhavanisagar in the 1983 rainy season, it yielded 2.6 t/ha of grain (18% more than WC-C75, the leading commercial open-pollinated cultivar in India). After full-sib mating in the 1984 dry season followed by selection for phenotypic similarity and bulking, ICTP8203 yielded 1.6 t grain/ha (4% less than WC-C75) in 79 replicated trials during 1984-86. However, in 19 trials in Maharashtra it yielded 2.1 t/ha, 7% more than WC-C75 and in 11 trials in Andhra Pradesh it yielded 1.5 t/ha, 11% more than WC-C75. ICTP8203 has a 1000-grain weight >12 g, at least 50% greater than any open pollinated cultivar previously released in India. It is 1.5-1.6 m tall and takes 50-52 days to 50% flowering in Maharashtra and Andra Pradesh. Heads are of medium length (16-18 cm), compact to semicompact and cylindrical to lanceolate with slight tapering towards the tip. ICTP8203 has good resistance to Sclerospora graminicola and generally escapes terminal drought owing to rapid grain filling and early maturity

    Novel ZnO hollow-nanocarriers containing paclitaxel targeting folate-receptors in a malignant pH-microenvironment for effective monitoring and promoting breast tumor regression

    Get PDF
    Low pH in the tumor micromilieu is a recognized pathological feature of cancer. This attribute of cancerous cells has been targeted herein for the controlled release of chemotherapeutics at the tumour site, while sparing healthy tissues. To this end, pH-sensitive, hollow ZnO-nanocarriers loaded with paclitaxel were synthesized and their efficacy studied in breast cancer in vitro and in vivo. The nanocarriers were surface functionalized with folate using click-chemistry to improve targeted uptake by the malignant cells that over-express folate-receptors. The nanocarriers released ~75% of the paclitaxel payload within six hours in acidic pH, which was accompanied by switching of fluorescence from blue to green and a 10-fold increase in the fluorescence intensity. The fluorescence-switching phenomenon is due to structural collapse of the nanocarriers in the endolysosome. Energy dispersion X-ray mapping and whole animal fluorescent imaging studies were carried out to show that combined pH and folate-receptor targeting reduces off-target accumulation of the nanocarriers. Further, a dual cell-specific and pH-sensitive nanocarrier greatly improved the efficacy of paclitaxel to regress subcutaneous tumors in vivo. These nanocarriers could improve chemotherapy tolerance and increase anti-tumor efficacy, while also providing a novel diagnostic read-out through fluorescent switching that is proportional to drug release in malignant tissues

    Registration of ‘ICTP 8203’ Pearl Millet

    Full text link

    Effect of incorporation of detoxified karanja (Pongamia pinnata) and neem (Azadirachta indica) seed cakes in total mixed rations on milk yield, composition and efficiency in crossbred dairy cows

    Get PDF
    In the present study, neem seed cake (51.55% CP) and karanja seed cake (37.91% CP) were used as a partial replacement of soybean protein cake. Three iso-nitrogenous total mixed rations (TMR) were prepared namely T1-control where soybean meal was incorporated at 9.6% of TMR, in T -dNC and T -dKC, the cakes were incorporated at 3.85 and 5.85% of TMR and fed to eighteen crossbred cows in three groups for 90 days. Milk yield (kg/day) and FCM yield (kg/day) was found to be higher in dNC compared to dKC groups. After 90 days of feeding, both milk yield (kg/ day) and FCM yield (kg/day) increased in all the groups. The average milk fat was found to be lower in (P<0.05) in T3-dKC group (5.03) compared to T1-control (6.13). Total solids was found to be lower in T2-dNC and T3-dKC groups compared to T1 control. DMI (kg) required for kg FCM was same in all the groups (1.38 in T1-control; 1.30 in T2- dNC and 1.66 in T3-dKC). It was concluded that detoxified neem cake (dNC) and detoxified karanja cake (dKC) can be included in total mixed rations of medium producing dairy cattle (5–8 liters of milk per day) replacing standard soybean meal without adversely affecting milk composition and milk production efficiency

    Genetic dissection of photoperiod response based on GWAS of pre-anthesis phase duration in spring barley

    Get PDF
    Heading time is a complex trait, and natural variation in photoperiod responses is a major factor controlling time to heading, adaptation and grain yield. In barley, previous heading time studies have been mainly conducted under field conditions to measure total days to heading. We followed a novel approach and studied the natural variation of time to heading in a world-wide spring barley collection (218 accessions), comprising of 95 photoperiod-sensitive (Ppd-H1) and 123 accessions with reduced photoperiod sensitivity (ppd-H1) to long-day (LD) through dissecting pre-anthesis development into four major stages and sub-phases. The study was conducted under greenhouse (GH) conditions (LD; 16/8 h; ∼20/∼16°C day/night). Genotyping was performed using a genome-wide high density 9K single nucleotide polymorphisms (SNPs) chip which assayed 7842 SNPs. We used the barley physical map to identify candidate genes underlying genome-wide association scans (GWAS). GWAS for pre-anthesis stages/sub-phases in each photoperiod group provided great power for partitioning genetic effects on floral initiation and heading time. In addition to major genes known to regulate heading time under field conditions, several novel QTL with medium to high effects, including new QTL having major effects on developmental stages/sub-phases were found to be associated in this study. For example, highly associated SNPs tagged the physical regions around HvCO1 (barley CONSTANS1) and BFL (BARLEY FLORICAULA/LEAFY) genes. Based upon our GWAS analysis, we propose a new genetic network model for each photoperiod group, which includes several newly identified genes, such as several HvCO-like genes, belonging to different heading time pathways in barley

    A Genome-Wide Analysis of Promoter-Mediated Phenotypic Noise in Escherichia coli

    Get PDF
    Gene expression is subject to random perturbations that lead to fluctuations in the rate of protein production. As a consequence, for any given protein, genetically identical organisms living in a constant environment will contain different amounts of that particular protein, resulting in different phenotypes. This phenomenon is known as “phenotypic noise.” In bacterial systems, previous studies have shown that, for specific genes, both transcriptional and translational processes affect phenotypic noise. Here, we focus on how the promoter regions of genes affect noise and ask whether levels of promoter-mediated noise are correlated with genes' functional attributes, using data for over 60% of all promoters in Escherichia coli. We find that essential genes and genes with a high degree of evolutionary conservation have promoters that confer low levels of noise. We also find that the level of noise cannot be attributed to the evolutionary time that different genes have spent in the genome of E. coli. In contrast to previous results in eukaryotes, we find no association between promoter-mediated noise and gene expression plasticity. These results are consistent with the hypothesis that, in bacteria, natural selection can act to reduce gene expression noise and that some of this noise is controlled through the sequence of the promoter region alon
    corecore